SMOG FILTER/Ex

GENERAL FILTRATION OF DUST AND GAS

APPLICATION

- cleaning the air from vapour, gas dust, in chemical-, analitic-, biological laboratories, during the grinding of various materials
- control of unpleasant smells appearing e.g. during gluing or usage of various types of aerosoles
- usage in zones of Ex hazard

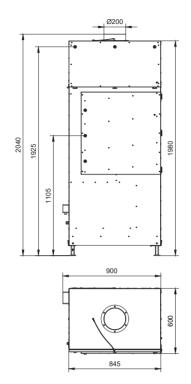
FEATURES

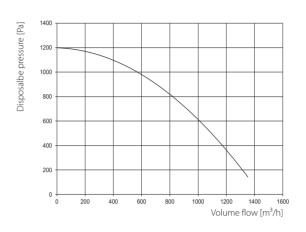
The appliance consists of:

- steel housing,
- Ex fan located in the bottom part of the system, at the side of clean air,
- pre-filter Paint-Stop,
- high-efficiency HEPA filter class H13,
- cassettes with granulated activated carbon,
- terminal box,
- motor starter installed in the room, beyond the zone of Ex hazard,
- inlet cover (on demand).

ADVANTAGES

- high filtration efficiency
- safe contamination control of the air, in the zones of the Ex hazard
- full recirculation of the extracted air
- activated carbon wide range of absorbtion of numerous chemical compounds




TECHNICAL DATA

Туре	Part No.	Maximum volume flow [m³/h]	Marking	Maximum vacuum [Pa]	Motor rate [kW]	Supply voltage [V/Hz]	Acoustic pressure level [dB(A)]*	Weight [kg]
SMOG FILTER-1200/Ex	801O35	1200	II 2 G c Ex e II T3	1270	0,55	3x400/50	59	230

^{*} Acoustic pressure level was measured from distanxe of 1m.

SMOG Filter-1200/Ex

REPLACEABLE FILTERS

HIGH-EFFICIENCY HEPA FILTER

	Type	Part No.	Weight [kg]	Dimensions AxBxH [mm]	Class	Quantity of filters	Application	Filtration material
A	FW-SF-Ex	852F00	3,2	390x535x292	H13	2	SMOG Filter-1200/Ex	hydrophobic glass paper filtration efficiency: 99,95%

CASSETTE WITH ACTIVATED CARBON

	Туре	Part No.	Weight [kg]	Dimensions AxBxH [mm]	Quantity of cassettes	Application	Remarks
A	WA-ECO-20	838K98	24*	534x534x155	3	SMOG Filter-1200/Ex	the cassette case is of cardboard and plywood

^{*} Weight of the active carbon – 20 kg.

PRE-FILTER PAINT-STOP

<u>B</u> →		Туре	Part No.	Weight [kg]	Dimensions AxBxH [mm]	Class	Quantity of filters	Application	Filtration material
A V		PS-SF	852F02	0,5	800x535x50	G3	1	SMOG Filter-1200/Ex	non-woven of glass fibre with progressively increasing density

ADDITIONAL EQUIPMENT

INLET GUARD

D	Type Part No.		Weight [kg]	Diameter D [mm]	
	K-SF	810H70	0,7	Ø450	

VALUES OF ACTIVATED CARBON ABSORPTION EFFICIENCY FOR VARIOUS TYPES OF VAPORS AND GASES

High efficiency

ethyl acrylate - C₅H₈O₂ methyl acrylate - C₄H₆O₂ acrylonitrile - C₃H₃N valericaldehyde-C₅H₁₀O amyl alcohol - C5H12O butyl alcohol - C₄H₁₀O propyl alcohol – C₃H₇OH aniline – C₆H₅NH₂ naphta (petroleum) naphta (coal tar) bromine - Br₂ butyl cellosolve - C₆H₁₄O₂ cellosolve – $C_4H_{10}O_2$ cellosolve acetate – C₆H₁₂O₃ butyl chloride - C₄H₀Cl propyl chloride - C₃H₇Cl monochlorobenzene – C₆H₅Cl chlorobenzene - C₆H₅Cl

chloronitropropane – C₃H₆CINO₂ chloropicrin - CCl₃NO₂ $chlorobutadiene - C_4H_5Cl\\$ cyclohexanol - C₆H₁₂O cyclohexanone – $C_6H_{10}O$ tetrachloroethane - C₂H₂Cl₄ tetrachloroethylene – C₂Cl₄ carbon tetrachloride – CCl₄

ethylene chlorhydrin - C₂H₅ClO

chloroform - CHCl₃

decane - C₁₀H₂₂ $dioxane - C_4H_8O_2$

dibromomethane - CH₂Br₂ ethylene dichloride – C₂H₄Cl₂ dichlorobenzene – C₆H₄Cl₂ dichloroethane - C₂H₄Cl₂ dichloroethylene - C₂H₂Cl₂ dichloronitroethane-CH3CCl2NO2

dichloropropane - C₃H₆Cl₂ $dimethylaniline-C_8H_{11}N\\$ amyl ether - C₁₀H₂₂O butyl ether - C₈H₁₈O dichloroethyl ether - C₄H₈Cl₂O isopropyl ether $-C_6H_{14}O$ propyl ether - C₆H₁₄O

ethyl benzene – C₈H₁₀ phenol-C₆H₆O heptane - C₇H₁₆ heptylene – C₇H₁₄ indole - C₈H₇N isophorone - C₉H₁₄O

iodine-I iodoform - CHIcamphor-C₁₀H₁₆O diethyl ketone – C₅H₁₀O dipropyl ketone – C₇H₁₄O methyl butyl ketone – $C_6H_{12}O$ methyl isobutyl ketone – $C_6H_{12}O$ methyl ethyl ketone – C₄H₈O

creosole – $C_8H_{10}O_2$ cresol - C₇H₈O crotonaldehyde – C₄H₆O

ethyl silicate – C₈H₂₀O₄Si acrylic acid – C₃H₄O₂

caprylic acid - C₈H₁₆O₂ butyric acid - C₄H₈O₂

lactic acid - C₃H₆O₃ uric acid - C₅H₄N₄O₃ acetic acid-CH₃COOH

propionic acid – C₃H₆O₂ valeric acid - C₅H₁₀O₂

menthol-C₁₀H₂₀O ethyl mercaptan – C₂H₆S propyl mercaptan – C₃H₈S methyl cellosolve – $C_3H_8O_2$ methyl cellosolve acetate – C₅H₁₀O₃

methylcyclohexane - C7H14 methylcyclohexanol - C7H14O

urea – CH₄N₂O kerosene

nicotyne – $C_{10}H_{14}N_2$ nitrobenzene - C₆H₅NO₂ nitroethane - C₂H₅NO₂ nitroglicerine - C₃H₅N₃O₉ nitropropane – C₃H₇NO₂

nitrotoluene – $C_7H_7NO_2$ nonane - C₉H₂₀

amyl acetate – $C_7H_{14}O_2$ butyl acetate – $C_6H_{12}O_2$ ethyl acetate - C₄H₈O₂

isopropyl acetate - C₅H₁₀O₂ propyl acetate - C₅H₁₀O₂ octalene - C₁₂H₈Cl₆

octane – C_8H_{18} putrescine – C₄H₁₂N₂

ozone – O₃ paradichlorobenzene – C₆H₄Cl₂

pentanone - C₅H₁₀O perchloroethylene-C2Cl4 $pyridine - C_5H_5N$

dimethylsulphate – $C_2H_6O_4S$

skatole – C₉H₉N styrene monomer – C₈H₈ turpentine – $C_{10}H_{16}$ mesityl oxide - C₆H₁₀O toluene - C₇H₈ toluidine – C₇H₉N trichloroethylene-C₂HCl₃

Average efficiency

 $acetone - C_3H_6O$ $acetylene - C_2H_2$ $acrolein - C_3H_4O$ butyraldehyde – C_4H_8O ethyl alcohol - C₂H₅OH methyl alcohol – CH₃OH benzene – C₆H₆

ethyl bromide – C₂H₅Br methyl bromide – CH₃Br butadiene – C₄H₆ chlorine - Cl₂ ethyl chloride – C₂H₅Cl vinyl chloride - C₂H₃Cl cyclohexene – C₆H₁₀ dichlorodifluoromethan - CCl₂F₂ diethyl amine – C₄H₁₁N

carbon disulphyde-CS2 ether – $C_4H_{10}O$ ethyl ether - C₄H₁₀O ethyl amine – C₂H₇N $fluorotrichloromethan - CCI_3F$ phosgene - COCI₂

anaesthetics hexane - C₆H₁₄ hexylene – C₆H₁₂ hexyne – C_6H_{10} isoprene – C₅H₈ hydrogen iodide – HI xylene – C₈H₁₀ formic acid – HCOOH methyl mercaptan – CH₃SH ethyl formate – $C_3H_6O_2$ methyl formate - C₂H₄O₂

nitromethane - CH₃NO₂ methyl acetate – $C_3H_6O_2$ pentane – C₅H₁₂ pentylene – C₅H₈ pentyne-C₅H₈

propionandehyde – C₃H₆O ethylene oxide – C₂H₄O carbon monoxide – CO

Low efficiency

 $acetaldehyde - C_2H_4O$ ammonia – NH₃ hvdrogen bromide – HBr butane – C₄H₁₀ butanone – C_4H_8O butylene - C₄H₈ butyne – C_4H_6 methyl chloride – CH₃Cl hydrogen chloride – HCl hydrogen cyanide – HCN nitrogen dioxide – NO₂ sulphur dioxide - SO₂ hydrogen fluoride-HF formaldehyde – CH₂O propane – C₃H₈ propylene - C₃H₆ propyne – C_3H_4 hydrogen selenide – H₂Se hydrogen sulphide – H₂S sulphur trioxide - SO₃