SMOG Filter/Ex – allgemeine Filtrierung von Stäube und Gase

SMOG Filter-1200/Ex

SMOG Filter-2400/Ex

II 2 G c Ex e II T3

Bestimmung

Der SMOG Filter/Ex dient zur Reinigung der Luft von Dämpfen, Gasen und Stäuben, die in Chemie-, Biologie-, und analytischen Labors aber auch während des Schleifens oder Laserschneidens von Gummi, Sperrholz, Plexiglas, Acryl und anderen Kunststoffen entstehen. Das Gerät wird vor allem in Vorgängen, in den lästige Gerüche entstehen, z.B. beim Kleben oder bei der Benutzung von verschiedenen Aerosolen, empfohlen. Der SMOG Filter/Ex absorbiert wirksam Tabakrauch und Verschmutzungen, die im Smog, der ins Gebäudeinnere gelangt ist, enthalten sind. Das Gerät darf in Explosionsgefahrzonen, wo explosionsfähige Atmosphäre auftreten kann, eingesetzt werden.

Bau

SMOG Filter/Ex besteht aus folgenden Elementen:

- einem Stahlblechgehäuse,
- einem Ventilator in explosionsbeständiger Ausführung, der sich im unteren Teil des Geräts, auf der Reinluftseite, befindet,
- einem Paint-Stop-Filter,
- einem hochwirksamen HEPA-Filter der H13-Klasse,
- Kassetten mit granulierter Aktivkohle,
- einem Anschlusskasten,
- einem Motorschalter, der außerhalb der explosionsgefährdeten Zone montiert wird,
- einem Saugkorb (auf Kundenwunsch).

Benutzung

Die SMOG Filter/Ex-Geräte sichern eine volle Zirkulation der abgesaugten Luft. Der Lufteintritt kann an einen Lokalabzug oder eine Lüftungsanlage angeschlossen und auf Kundenwunsch mit einer Saugkorb ausgestattet werden. In allen Fällen wird abgesaugte Luft nach der Reinigung durch die perforierte Fläche des Luftaustritts im unteren Teil des Geräts in den Raum zurückgeführt.

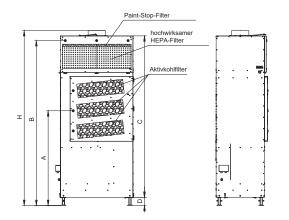
Aktivkohle-Kassetten adsorbieren die Mehrheit schädlicher chemischer Verbindungen wie Styrol, Toluol, Alkohole, Phenol und viele andere. Staubverschmutzungen werden durch den hochwirksamen HEPA-Filter aufgefangen. Die Adsorptionskapazität der Aktivkohle in Bezug auf verschiedene Dämpfe und Gase wurde auf der nächsten Seite dargestellt.

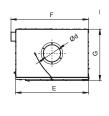
Die Bedienung des SMOG Filters/Ex beschränkt sich auf:

- einen zyklischen Austausch des Paint-Stop-Filters,
- einen zyklischen Austausch des HEPA-Filters,
- einen zyklischen Austausch von Kassetten mit Aktivkohle.

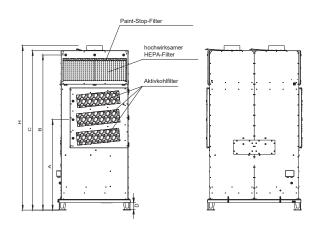
Der Austausch des Paint-Stop und des HEPA-Filters sollte nach der Beobachtung eines Leistungsabfalls des Geräts erfolgen.

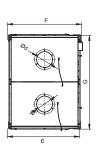
Die Notwendigkeit des Austauschs des Aktivkohlefilters muss durch organoleptische Bewertung der Eigenschaften von Aktivkohle festgestellt werden, sobald eine schlechtere Qualität der Luft am Luftaustritt des Geräts beobachtet wird.


Technische Daten

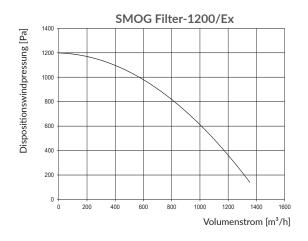

Тур	Kat. Nr.	Max. Leistung [m³/h]	Kennzeichnung	Max. Luftunterdruck [Pa]	Motorleistung [kW]	Speisungsspannung [V/Hz]	Schalldruck [dB(A)]*	Gewicht [kg]
SMOG Filter-1200/Ex	801035	1200	II 2 G c Ex e II T3	1270	0,55	3x400/50	59	230
SMOG Filter-2400/Ex	801036	2350	II 2 G c Ex e II T3	1750	1,1	3x400/50	61	375

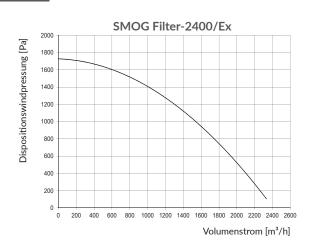
^{*} Schalldruck wurde aus 1 m Entfernung vom Gerät gemessen.


SMOG Filter/Ex


SMOG Filter-1200/Ex

SMOG Filter-2400/Ex





Maße

Тур	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	Ød [mm]
SMOG Filter-1200/Ex	1105	1925	1885	95	845	900	600	2040	200
SMOG Filter-2400/Ex	1145	1965	2020	95	905	935	1185	2080	200

Arbeitskennlinien

SMOG Filter/Ex

Ersatzteile

Hochwirksamer HEPA-Filter

	Тур	Kat. Nr.	Gewicht [kg]	Maße AxBxH [mm]	Klasse	Anzahl von Filtern	Bestimmung	Filterstoff			
Ą	FW-SF-Ex	V-SF-Ex 852F00 3		050500		390x535x292	H13	2	SMOG Filter-1200/Ex	Hydrophobische Glasfaser	
7	FVV-SF-EX	832F00	3,2	39UX333X292	ніз	4	SMOG Filter-2400/Ex	99,95%.			

Kassette mit Aktivkohle

A	H
	17

Тур	Kat. Nr.	Gewicht [kg]	Maße AxBxH [mm]	Anzahl der Kassetten	Bestimmung	Bemerkung
WA 500 00			504 504 455	3	SMOG Filter-1200/Ex	Kassette aus Pappe
WA-ECO-20	838K98	24*	534x534x155	6	SMOG Filter-2400/Ex	und Sperrholz.

^{*}Gewicht der Aktivkohle - 20 kg.

ľ	Paint-Stop-Filter
	■ B
	A SOMEONIA
	A
	<u> </u>
	<u> </u>

	Тур	Kat. Nr	Gewicht [kg]	Maße AxBxH [mm]	Klasse	Anzahl von Filtern	Bestimmung	Filterstoff
	PS-SF	050500	0.5	000,505,50			SMOG Filter-1200/Ex	Glasfaser mit progressiv
/	P3-3F	852F02	0,5	800x535x50 G3 2		2	SMOG Filter-2400/Ex	wachsender Dichte.

Zusatzausstattung

igkorb
D ▶
30 mg

Тур	Kat. Nr.	Gewicht [kg]	Durchmesser D [mm]
K-SF	810H70	0,7	Ø450

SMOG Filter/Ex

Adsorptionskapazität von Aktivkohle in Bezug auf verschiedene Dämpfe und Gase

Gut adsorbierbare Gase

ethyl acrylate – C₅H₈O₂ methyl acrylate – $C_4H_6O_2$ acrylonitrile – C_3H_3N acrylonitfile – C_3H_3N valericaldehyde – $C_5H_{10}O$ amyl alcohol – $C_5H_{12}O$ butyl alcohol – $C_4H_{10}O$ propyl alcohol – C_3H_7OH aniline – C₆H₅NH₂ naphta (petroleum) naphta (coal tar) bromine – Br₂ butyl cellosolve – C₆H₁₄O₂ – cellosolve – C₄H₁₀O₂ - cellosolve acetate - C₆H₁₂O₃ butyl chloride – C_4H_9Cl propyl chloride – C_3H_7Cl monochlorobenzene – C_6H_5Cl chlorobenzene – C_6H_5Cl ethylene chlorhydrin – C_2H_5ClO ethylene chlorhydrin – C₂H₅ClO chloroform – CHCl₃ chloronitropropane – C₃H₆ClNO₂ chloropicrin – CCl₃NO₂ chlorobutadiene – C₄H₅Cl cyclohexanol – C₆H₁₂O cyclohexanone – C₆H₁₀O tetrachloroethane – C₂H₂Cl₄ tetrachloroethylene – C₂Cl₄ carbon tetrachloride – CCl₄ decane – $C_{10}H_{22}$ dioxane – $C_4H_8O_2$ dibromomethane – CH_2Br_2 dibromomethane $- CH_2BT_2$ ethylene dichloride $- C_2H_4CI_2$ dichlorobenzene $- C_6H_4CI_2$ dichloroethane $- C_5H_4CI_2$ dichloroethylene $- C_5H_2CI_2$ dichloronitroethane $- C_3H_2CI_2$ dichloropropane $- C_3H_2CI_2$ dimethylaniline $- C_8H_{11}N$ amyl ether $- C_8H_{18}O$ butyl ether $- C_8H_{18}O$ dichloroethyl ether $- C_8H_{18}O$ olichloroethyl ether $- C_8H_{18}O$ propyl ether $- C_8H_{18}O$ ethyl betzene $- C_8H_{18}O$ ethyl benzene – C_8H_{10} phenol – C_6H_6O heptane – C₇H₁₆ heptylene – C₇H₁₄ indole – C₈H₇N isophorone - C₉H₁₄O iodoform − CHI₃ $\begin{array}{l} camphor-C_{10}H_{16}O \\ diethyl \ ketone-C_5H_{10}O \end{array}$

dipropyl ketone – $C_7H_{14}O$ methyl butyl ketone – $C_6H_{12}O$ methyl isobutyl ketone - C₆H₁₂O methyl ethyl ketone – C_4H_8O creosole – $C_8H_{10}O_2$ cresol – C_7H_8O cresol – C_7H_8O crotonaldehyde – C_4H_6O ethyl silicate – $C_8H_{3O}O_4Si$ acrylic acid – $C_3H_4O_2$ caprylic acid – $C_8H_8O_2$ butyric acid – $C_4H_8O_2$ lactic acid – $C_5H_6O_3$ uric acid – $C_5H_6O_3$ uric acid – $C_5H_6O_3$ propionic acid – CH_3COOH propionic acid – $C_3H_6O_2$ valeric acid – $C_5H_{10}O_2$ menthol – $C_{10}H_{20}O$ ethyl mercaptan – C_2H_6S propyl mercaptan – C₃H₈S – methyl cellosolve – C₃H₈O₂ methyl cellosolve acetate – C₅H₁₀O₃ methylcyclohexane - C7H14 methylcyclohexanol – $C_7H_{14}O$ urea – CH_4N_2O kerosene nicotyne – C₁₀H₁₄N₂ nitrobenzene – $C_6H_5NO_2$ nitroethane – $C_2H_5NO_2$ nitroetnane – $C_2H_5NO_2$ nitroglicerine – $C_3H_5N_3O_9$ nitropropane – $C_3H_7NO_2$ nitrotoluene – $C_7H_7NO_2$ nonane – C_9H_{20} nonane – C_5H_{20} amyl acetate – $C_7H_{14}O_2$ butyl acetate – $C_6H_{12}O_2$ ethyl acetate – $C_6H_{10}O_2$ isopropyl acetate – $C_5H_{10}O_2$ ortalene – $C_12H_8CI_8$ octane – C_8H_{18} putrescine – $C_4H_{12}N_2$ ozone – O₃ paradichlorobenzene – C₆H₄Cl₂ - pentanone - C₅H₁₀O perchloroethylene - C₂Cl₄ pyridine – C₅H₅N dimethylsulphate – C₂H₆O₄S skatole – C₉H₉N styrene monomer – C₈H₈ turpentine – $C_{10}H_{16}$ mesityl oxide – $C_6H_{10}O$ toluene – C₇H₈ toluidine – C₇H₉N $trichloroethylene-C_2HCl_3\\$

Mäßig adsorbierbare Gase acetone — C_3H_6O acetylene — C_2H_2 acrolein — C_3H_4O butyraldehyde — C_4H_8O ethyl alcohol — C_2H_5OH methyl alcohol — C_2H_5OH benzene — C_5H_6 ethyl bromide — C_2H_5BF methyl bromide — C_2H_5BF methyl bromide — C_3H_5BF butadiene — C_4H_6 chlorine — C_4 cyclohexene — C_6H_0 dichlorodifluoromethan — CCl_2F_2 diethyl amine — C_3H_3CI cyclohexene — C_6H_0 dichlorodifluoromethan — CCl_2F_2 diethyl amine — C_3H_7OI cyclohexene — C_6H_0 dichlorodifluoromethan — CCl_2F_2 diethyl amine — C_3H_7OI fluorotrichloromethan — CCl_3F_1 phylogene — C_3H_0 0 ethyl ether — C_3H_0 0 ethyl ether — C_3H_0 1 mione — C_3H_0 1 hexylene — C_5H_0 1 hexylene — C_5H_0 1 hexylene — C_5H_0 2 hexyne — C_5H_0 2 methyl formate — $C_3H_6O_2$ methyl formate — $C_3H_6O_2$ methyl formate — $C_3H_6O_2$ pentane — C_5H_8 propionandehyde — $C_3H_6O_2$ pentane — C_5H_8 propionandehyde — $C_3H_6O_2$ thylene — C_5H_8 propionandehyde — $C_3H_6O_2$ arbon monoxide — COI

acetaldehyde – C₂H₄O ammonia – NH₃ hydrogen bromide – HBr butane – C₄H₁₀ butanone – C₄H₈ butyne – C₄H₈ butyne – C₄H₈ butyne – C₄H₈ methyl chloride – CH₃Cl hydrogen chloride – HCl hydrogen cyanide – HCN nitrogen dioxide – NO₂ sulphur dioxide – SO₂ hydrogen fluoride – HF formaldehyde – CH₂O propane – C₃H₈ propylene – C₃H₆ propyne – C₃H₆ protyne – C₃H₆ protyne selenide – H₂Se hydrogen sulphide – H₂S sulphur trioxide – SO₃