SMOG Filter – general filtration of dusts and gases **SMOG Filter-400** **SMOG Filter-800** **SMOG Filter-1200** **SMOG Filter-2400** ## **Purpose** SMOG Filter absorbers are efficient solutions for cleaning the air from vapour, gas and dust particles in chemical-, biological labs, analytical labs, during the grinding or laser cutting of rubber, plywood, plexi, acryl and other plastics. Especially, they are applied in processes where annoying smell is emitted, e.g. during gluing or while using various types of aerosols. Additionally, SMOG Filter absorbers efficiently absorb tobacco smoke and contaminations contained in the smog that has infiltrated into the room from the environment. Do not use the appliance in areas of explosion hazard, where explosive atmosphere can occur. ### **Structure** SMOG Filter absorber consists of following elements: - housing of steel sheet, - fan placed in the lower part of the device, at the side of clean air. - Paint-Stop filter, - high-efficiency HEPA filter class H13, - cassette with granulate of active carbon, - pressure control to signalise the excessive flow resistances of the HEPA filter, - control unit, - suction cover (on demand). ## **Operational Use** SMOG Filter absorbers provide a full recirculation of the extracted air. The device inlet can be connected with a local exhaust, with a system of general ventilation or equipped with a suction cover. In all configurations, the drawn in air returns into the room through a perforated outlet surface (underneath the device), after the filtration. The cassettes with granulated active carbon, efficiently absorb the majority of harmful chemical compounds as styrene, toluene, alcohols, phenol and many others. Dust pollutants are captured by the high-efficiency HEPA filter. At the moment when the HEPA filter reaches its limit pollution degree, the signalling lamp indicates the filter replacement necessity. Active carbon absorptiveness for different vapours and gases is presented on next page. The maintenance of device consists in: - periodical replacement of the HEPA filter as indicated by signaling lamp, - periodical replacement of cassettes with active carbon depending on the organoleptic evaluations of User, - periodical replacement of the Paint-Stop filter. ### **Technical Data** | Туре | Part No. | Maximum
volume flow
[m³/h] | Maximum vacuum
[Pa] | Motor
rate
[kW] | Supply voltage
[V/Hz] | Acoustic pressure
level [dB(A)]* | Weight
[kg] | |------------------|----------|----------------------------------|------------------------|-----------------------|--------------------------|-------------------------------------|----------------| | SMOG Filter-400 | 801030 | 500 | 940 | 0,25 | 230/50 | 57 | 136 | | SMOG Filter-800 | 801031 | 800 | 940 | 0,25 | 230/50 | 57 | 182 | | SMOG Filter-1200 | 801032 | 1200 | 1270 | 0,37 | 230/50 | 59 | 228 | | SMOG Filter-2400 | 801033 | 2350 | 1750 | 1,1 | 230/50 | 68 | 365 | ^{*} Acoustic pressure level measurement has been carried out in distance of 1 m from the device. ## **SMOG Filter** ## **SMOG Filter** # Dimensions | Туре | A [mm] | B [mm] | ØC [mm] | D [mm] | E [mm] | F [mm] | G [mm] | H [mm] | I [mm] | |------------------|--------|--------|---------|--------|--------|--------|--------|--------|--------| | SMOG Filter-400 | 1275 | 1210 | Ø 200 | 95 | 850 | 940 | 565 | 600 | - | | SMOG Filter-800 | 1505 | 1440 | Ø 200 | 95 | 850 | 940 | 565 | 600 | - | | SMOG Filter-1200 | 1735 | 1670 | Ø 200 | 95 | 850 | 900 | 565 | 600 | - | | SMOG Filter-2400 | 1735 | 1670 | Ø 200 | 95 | 1130 | 1200 | 850 | 900 | 560 | ## Flow charts #### ## Replaceable parts #### High-efficiency HEPA filter | | Туре | Part No. | Weight
[kg] | Dimensions AxBxH
[mm] | Class | Quantity
of filters | Purpose | Filtration material | |---|---------|--------------|----------------|--------------------------|------------------|------------------------|--------------------------------|----------------------| | A | FW-SF | FW-SF 852F01 | F01 3,2 | 900,525,90 | LI12 | 1 | SMOG Filter-
400, 800, 1200 | Hydrophobic paper of | | 8 | 1 77-51 | 032101 | 5,2 | 0000333000 | 800x535x80 H13 2 | | SMOG Filter-2400 | glass-fibre 99,95%. | #### Cassette with active carbon | A ::::::: | Туре | Part No. | Weight
[kg] | Dimensions AxBxH
[mm] | Quantity | Purpose | Remarks | |------------------|-----------|----------|----------------|--------------------------|----------|------------------|-----------------------| | A | WA-ECO-20 | 838K98 | 24* | | 1 | SMOG Filter-400 | | | | | | | 534x534x155 | 2 | SMOG Filter-800 | Cassette of cardboard | | | | | | | 3 | SMOG Filter-1200 | and plywood | | | | | | | 6 | SMOG Filter-2400 | | *Weight of the active carbon 20 kg. | Pre-filter | | | | | | | | | |------------|---------|-----------------|-------------|--------------------------|-------|---------------------|--------------------------------|---------------------| | B → | Туре | Part No. | Weight [kg] | Dimensions
AxBxH [mm] | Class | Quantity of filters | Purpose | Filtration material | | A | , DC CE | S-SF 852F02 0,5 | 0.5 | 800x535x50 | G3 | 1 | SMOG Filter-
400, 800, 1200 | Glass spunbond with | | | P3-3F | | 600x333X30 | GS | 2 | SMOG Filter-2400 | progressively growing density. | | ## **SMOG Filter** | Suction cover | | | | | | | | | |---------------|------|----------|-------------|--------------------|--|--|--|--| | D | Туре | Part No. | Weight [kg] | Diameter D
[mm] | | | | | | | K-SF | 810H70 | 0,7 | 450 | | | | | ## Values of activated carbon absorption efficiency for various types of vapors and gases High efficiency ethyl acrylate – C₄H₄O₂ acrylo₁itrile – C₃H₃N valericaldehyde – C₅H₁O amyl alcohol – C₃H₂O butyl alcohol – C₃H₂O apilia, e - C₄H₃O propyl alcohol – C₃H₂O apilia, e - C₄H₃O apilia, e - C₄H₃O — cellosolve – C₄H₁₀O — cellosolve – C₄H₁₀O — cellosolve – C₄H₂C — cellosolve – C₄H₂Cl propyl chloride – C₄H₅Cl mo₁ochloride – C₄H₅Cl chlorobe₁ze₁e – C₆H₃Cl chlorobe₂ze₆e – C₆H₃Cl chloroform – CHCl₃ chlorofirin – CCl NO chloroform – CHCl₃ chloropicrin – CCl NO chlorobetha₁e – C₃H₄Cl cyclohexa₁O₁e – C₅H₁₀O tetrachloroetha₁e – C₇H₂Cl tetrachloroethyle₁e – C₇Cl deca₁e – C₁H₂Cl dichlorobe₁ze₆e – C₆H₄Cl dichlorobethyle₁e – C₇H₄Cl dichlorobethyle₁e – C₇H₄Cl dichloroethyle₁e C₈H₁Cl dichloroethyle₁e – C₈H₁Cl dichlorothyle₁e – C₈H₁Cl dichloroethyle – C₈H₁Cl dichlorothyle C₈ dipropyl keto,e - C,H₁₄O methyl butyl keto,e - C,H₁₂O methyl siobutyl keto,e - C,H₁₂O methyl siobutyl keto,e - C,H₁₂O methyl ethyl keto,e - C,H₁₂O methyl ethyl keto,e - C,H₁₂O cresol - C,H₁₀O cresol - C,H₁₀O croto,aldehyde - C,H₂O croto,aldehyde - C,H₂O croto,aldehyde - C,H₂O caprylic acid - C,H₂O caprylic acid - C,H₂O butyric acid - C,H₂O butyric acid - C,H₂O suric acid - C,H₂O uric acid - C,H₂O butyric acid - C,H₂O butyric acid - C,H₂O coh methyl cacid - C,H₂O coh methol - C₁₀H₂₀O ethyl mercapta, - C₂H₂S propyl mercapta, - C₂H₂S propyl mercapta, - C₂H₃S - methyl cellosolve acetate - C,H₁₀O₃ methylcyclohexa,e - C,H₃A methylcyclohexa,e - C,H₃A methylcyclohexa,e - C,H₃A mitrobe,ze,e - C,H₃NO nitroetha,e - C,H₃NO nitropina,e no,a,e - C,H₃O butyl acetate - C,H₃NO no,a,e - C,H₃O cotale,e - C,H₃O porpyl acetate - C,H₁O cotale,e - C,H₃N dimethylsulphate - C,H₃O skatole - C,H₃N dimethylsulphate - C,H₃O skatole - C,H₃N styre,e mo,omer - C,BH turpe,Tine - C,OH₁₆ mesityl oxide - C,H₁O tolue,e - C,H₃N trichloroethyle,e - C₂HCl₃ Average efficiency aceto_ne - C₃H₂O acetyle_ne - C₂H₂ acrolei_n - C₃H₄O butyraldehyde - C₄H₈O ethyl alcohol - C₂H₅OH methyl alcohol - C₄H₅OH be_nze_ne - C₆H₆ ethyl bromide - C₂H₅Br methyl bromide - C₂H₅Br butadie_ne - C₄H₆ chlori_ne - C₁ ethyl chloride - C₂H₅Cl v₁N₂ chloride - C₂H₅Cl v₁N₂ chloride - C₂H₅Cl v₂Clohexe_ne - C₆H₁₀ dichlorodifiluorometha_n - CCl₂F₂ diethyl ami_ne - C₄H₁₁N carbo_n disulphyde - CS₂ ether - C₄H₁₀O ethyl formate - C₄H₁₀ isopre_ne - C₅H₁₀ isopre_ne - C₅H₁₀ isopre_ne - C₅H₁₀ ethyl formate - C₄H₀O₂ methyl formate - C₄H₀O₂ nethyl formate - C₄H₀O₂ nethyl acetate - C₃H₈O₂ pe_nta_ne - C₅H₈ pe_nty_ne Low efficiency acetaldehyde - C₂H₄O ammo_nia - NH₃ hydroge_n, bromide - HBr buta_ne - C₄H₈O butyle_ne - C₄H₈O butyle_ne - C₄H₈ buty_ne - C₄H₈ hydroge_n, chloride - HCl hydroge_n, chloride - HCl hydroge_n, chloride - HCN nitroge_n dioxide - NO₂ sulphur dioxide - SO₂ hydroge_n, fluoride - HF formaldehyde - CH₂O propa_ne - C₃H₈ propyle_ne - C₃H₆ propyle_ne - C₃H₆ propyle_ne - C₃H₆ propyle_ne - Sele_nide - H₂Se hydroge_n sulphide - H₂Se hydroge_n sulphide - SO₃