SMOG Filter/Ex – general filtering of dusts and gases SMOG Filter-2400/Ex ## II 2 G c Ex e II T3 #### **Purpose** SMOG Filter/Ex separators are efficient in cleaning the air of vapours, gases and dust particles in chemical laboratories, biological research units, analytical labs, during the grinding of various materials. Especially, they are applied in processes, accompanying by unpleasant smells, e.g. during gluing or using various types of aerosols. The appliance can be used within areas of explosion hazard, where explosive atmosphere can occur. #### **Structure** SMOG Filter/Ex absorber is constructed of subsequent elements: - steel sheet housing. - Ex fan located in the lower part of the device, at the side of clean air - Paint-Stop pre-filter, - high-efficiency HEPA filter class H13, - cassettes with granulated activated carbon, - terminal box, - motor starter (to be installed within the room outside of the explosion risk area), - inlet guard (on demand). ### **Operational Use** SMOG Filter/Ex provide complete recirculation of the extracted air. The device inlet can be connected with a local exhaust, system of general ventilation or can be equipped with a protective inlet suction head. In all these cases, the extracted air is being returned (recirculated) back into the process room, after the filtration. The recirculation proceeds through a perforated outlet surface underneath the device. The cassettes with granulated activated carbon absorb efficiently the majority of noxious chemical compounds, such as styrene, toluene, alcohols, phenol and many others. Dust contaminants are captured by the high-efficiency HEPA filter. Absorptivity efficiency of the activated carbon for various vapours and gases is mentioned on next page. Maintenance consists in: - periodical cleaning of the Paint-Stop pre-filter, - periodical replacement of the HEPA filter, - periodical replacement of the cassettes with activated carbon. Replacement of the Paint-Stop and HEPA filters ought to be carried out at the moment of noticeable decrease of air volume flow. Execute the replacement of the cassettes with activated carbon when the worse air quality (at the device outlet) is perceptible. #### Technical Data | Туре | Part No. | Maximum
volume flow
[m³/h] | Marking | Maximum vacuum
[Pa] | Motor
rate [kW] | Supply voltage
[V/Hz] | Acoustic pressure
level [dB(A)]* | Weight
[kg] | |---------------------|----------|----------------------------------|---------------------|------------------------|--------------------|--------------------------|-------------------------------------|----------------| | SMOG Filter-1200/Ex | 801035 | 1200 | II 2 G c Ex e II T3 | 1270 | 0,55 | 3x400/50 | 59 | 230 | | SMOG Filter-2400/Ex | 801036 | 2350 | II 2 G c Ex e II T3 | 1750 | 1,1 | 3x400/50 | 61 | 375 | ^{*} Acoustic pressure level has been measured at a distance of 1 m from the device. ## SMOG Filter/Ex SMOG Filter-1200/Ex SMOG Filter-2400/Ex ## Dimensions | Туре | A [mm] | B [mm] | C [mm] | D [mm] | E [mm] | F [mm] | G [mm] | H [mm] | Ød [mm] | |---------------------|--------|--------|--------|--------|--------|--------|--------|--------|---------| | SMOG Filter-1200/Ex | 1105 | 1925 | 1885 | 95 | 845 | 900 | 600 | 2040 | 200 | | SMOG Filter-2400/Ex | 1145 | 1965 | 2020 | 95 | 905 | 935 | 1185 | 2080 | 200 | ## Flow charts ## SMOG Filter/Ex ## Replaceable parts #### High-efficiency HEPA filter | A | Туре | Part No. | Weight
[kg] | Dimensions AxBxH
[mm] | Class | Quantity of filters | Application | Filtration material | |---|----------|---------------------|----------------|--------------------------|-------|---------------------|---------------------|---------------------------------| | | FW-SF-Ex | FW-SF-Ex 852F00 3,2 | | 390x535x292 | H13 | 2 | SMOG Filter-1200/Ex | Hydrophobic glass paper 99,95%. | | | | | 3,2 | | | 4 | SMOG Filter-2400/Ex | | | Cassette with activated carbon | | | | | | | | | | | |--------------------------------|---|--------|---------------------|-------------|---------|---------------------|------------------------------|--|--|--| | A | Type Part No. Weight Dimensions [kg] AxBxH [mm] | | Quantity of filters | Application | Remarks | | | | | | | | WA-ECO-20 | 838K98 | 24* | 534x534x155 | 3 | SMOG Filter-1200/Ex | Cassette housing | | | | | | | | | | 6 | SMOG Filter-2400/Ex | is of cardboard and plywood. | | | | ^{*}Weight of the active carbon ~20 kg. | Pre-filter Paint-Stop | | | | | | | | | | | |-----------------------|-------|----------|----------------|--------------------------|-------|---------------------|---------------------|--|--|--| | A B | Туре | Part No. | Weight
[kg] | Dimensions
AxBxH [mm] | Class | Quantity of filters | Application | Filtration material | | | | | PS-SF | 050500 | 0.5 | 000 505 50 | G3 | 1 | SMOG Filter-1200/Ex | Glass unwoven with progressively increasing density. | | | | | r3-3F | 852F02 | 0,5 | 800x535x50 | | 2 | SMOG Filter-2400/Ex | | | | ## Additional equipment | Suction head | | | | | | | | | | |--------------|------|----------|-------------|--------------------|--|--|--|--|--| | D | Туре | Part No. | Weight [kg] | Diameter D
[mm] | | | | | | | | K-SF | 810H70 | 0,7 | Ø450 | | | | | | #### SMOG Filter/Ex #### Values of activated carbon absorption efficiency for various types of vapors and gases High efficiency ethyl acrylate – C₅H₈O₂ ethyl acrylate $- C_5 H_8 O_2$ methyl acrylate $- C_4 H_6 O_2$ acrylonitrile $- C_3 H_3 N$ valericaldehyde $- C_5 H_{10} O$ amyl alcohol $- C_5 H_{12} O$ butyl alcohol $- C_4 H_{10} O$ propyl alcohol $- C_3 H_7 O H$ aniline $- C_6 H_5 N H_2$ naphta (petroleum) naphta (coal tar) bromine – Br_2 butyl cellosolve – $C_6H_{14}O_2$ – cellosolve – C₄H₁₀O₂ cellosolve acetate $-C_6H_{12}O_3$ butyl chloride $-C_4H_9Cl$ propyl chloride $-C_3H_7Cl$ monochlorobenzene $-C_6H_5Cl$ chlorobenzene – C₆H₅Cl ethylene chlorhydrin – C₂H₅ClO chloroform - CHCl3 chloroform – CHU₃ chloronitropropane – C_3H_0 chloropicrin – CCl₃NO₂ chlorobutadiene – C_4H_5 Cl cyclohexanol – C_6H_{12} O cyclohexanone – C_6H_{10} O tetrachloroethane – $C_2H_2Cl_4$ tetrachloroethylene – C_2Cl_4 carbon tetrachloride – CCl_4 decane – C₁₀H₂₂ dioxane – C₄H₈O₂ dibromomethane – CH₂Br₂ with the children of the control dichloronitroethane – $C_3H_6Cl_2$ dichloropropane – $C_3H_6Cl_2$ dimethylaniline – $C_8H_{11}N$ amyl ether – $C_{10}H_{22}O$ butyl ether – $C_8H_{18}O$ dichloroethyl ether – $C_4H_8Cl_2O$ isopropyl ether – $C_6H_{14}O$ propyl ether – C₆H₁₄O ethyl benzene – C_8H_{10} phenol – C_6H_6O heptane – C_7H_{16} heptylene – C₇H₁₄ indole – C₈H₇N isophorone - C₉H₁₄O iodine – I iodoform – CHI₃ camphor – C₁₀H₁₆O diethyl ketone - C₅H₁₀O dipropyl ketone – $C_7H_{14}O$ methyl butyl ketone – $C_6H_{12}O$ methyl isobutyl ketone – $C_6H_{12}O$ methyl ethyl ketone – C_4H_8O creosole – $C_8H_{10}O_2$ cresol – C_7H_8O cresol – C_7H_8O crotonaldehyde – C_4H_6O ethyl silicate – $C_8H_{20}O_4Si$ acrylic acid – $C_3H_4O_2$ caprylic acid – $C_8H_{16}O_2$ butyric acid – $C_4H_8O_2$ lactic acid – $C_3H_6O_3$ uric acid – $C_5H_6N_4O_3$ acetic acid – $C_5H_6N_4O_3$ acetic acid – $C_5H_6N_4O_3$ valeric acid $-C_5H_{10}O_2$ menthol $-C_{10}H_{20}O$ ethyl mercaptan $-C_2H_6S$ euty: $\Pi \text{ercaptan} - \text{L}_2 \text{H}_6 \text{S}$ propy! mercaptan $-\text{C}_3 \text{H}_8 \text{S}_2$ -methyl cellosolve $-\text{C}_3 \text{H}_8 \text{O}_2$ -methyl cellosolve acetate $-\text{C}_5 \text{H}_{10} \text{O}_3$ methylcyclohexanol $-\text{C}_7 \text{H}_{14}$ methylcyclohexanol $-\text{C}_7 \text{H}_{14} \text{O}$ urea $-\text{CH}_4 \text{N}_2 \text{O}$ kerosene nicotyne – C₁₀H₁₄N₂ $\begin{array}{l} \text{nicotyne} - C_{10}H_{14}N_2\\ \text{nitrobenzene} - C_{6}H_{5}NO_2\\ \text{nitrobenzene} - C_{5}H_{5}NO_2\\ \text{nitroglicerine} - C_{3}H_{5}N_{3}O_{9}\\ \text{nitropropane} - C_{5}H_{7}NO_2\\ \text{nitropropane} - C_{5}H_{7}NO_2\\ \text{nonane} - C_{9}H_{20}\\ \text{amyl acetate} - C_{7}H_{14}O_2\\ \text{butyl acetate} - C_{4}H_{12}O_2\\ \text{ethyl acetate} - C_{6}H_{10}O_2\\ \text{propyl acetate} - C_{5}H_{10}O_2\\ \text{octane} - C_{12}H_{8}Cl_{9}\\ \text{octane} - C_{12}H_{8}Cl_{9}\\ \text{outhous conservations} \end{array}$ ozone – O_3 paradichlorobenzene – $C_6H_4Cl_2$ – pentanone – $C_5H_{10}O$ perchloroethylene – C₂Cl₄ pyridine – C_5H_5N dimethylsulphate – $C_2H_6O_4S$ skatole – C₉H₉N styrene monomer-turpentine – C₁₀H₁₆ mesityl oxide – C₆H₁₀O toluene – C_7H_8 toluidine – C_7H_9N trichloroethylene – C_2HCl_3 ## Average efficiency acetone – C₃H₆O acetylene – C_2H_2 acrolein – C_3H_4O butyraldehyde – C₄H₈O ethyl alcohol – C₂H₅OH methyl alcohol – CH_3OH benzene – C_6H_6 ethyl bromide – C_2H_5Br methyl bromide – CH_3Br butadiene – C₄H₆ chlorine – Cl₂ ethyl chloride – C₂H₅Cl vinyl chloride – C₂H₃Cl cyclohexene – C₆H₁₀ dichlorodifluoromethan – CCl₂F₂ dichtyl amine – C.H. N diethyl amine – C₄H₁₁N carbon disulphyde – CS₂ ether – $C_4H_{10}O$ ethyl ether – $C_4H_{10}O$ ethyl amine – C_2H_7N fluorotrichloromethan - CCl₃F phosgene – COCl₂ anaesthetics hexane - C₆H₁₄ hexane – C_6H_{14} hexylene – C_6H_{12} hexyne – C_6H_{10} isoprene – C_5H_8 hydrogen iodide – HI xylene – C_8H_{10} formic acid – HCOOH methyl mercaptan – CH₃SH ethyl formate – $C_3H_6O_2$ methyl formate – $C_2H_4O_2$ nitromethane – CH_3NO_2 methyl acetate - C₃H₆O₂ pentane - C₅H₁₂ pentylene – C_5H_8 pentyne – C_5H_8 propionandehyde – C₃H₆O ethylene oxide - C₂H₄O carbon monoxide - CO **Low efficiency** acetaldehyde − C₂H₄O ammonia − NH₃ hydrogen bromide – HBr hydrogen bromide – HBr butane – C_4H_{10} butanene – C_4H_8 0 butylene – C_4H_8 butyne propylene – C_5H_8 propylene – C_5H_8 propyne – C_5H_8 hydrogen selenide – C_5H_8 bydrogen selenide – C_5H_8 hydrogen selenide – H₂Se hydrogen sulphide – H₂S sulphur trioxide – SO₃