MiniDygestorium-350 – individual stand for work with dusts and gases ### **Purpose** MiniDygestorium-350 was designed to purify air and absorb any waste gases produced in small amounts in chemical, biological or analytical laboratories, research or healthcare facilities, school labs and other places that produce where harmful gases or vapors are produced. MiniDygestorium-350 makes it impossible for waste gases to spread across the room. The device must not be used in hazardous areas with explosive atmospheres. #### **Structure** The device is composed of the following elements: - cabinet hood glass-covered exhaustion chamber made of acid-proof steel with two openings for hands allowing for the performance of various tasks inside the device, - enclosure made of steel sheets 3 segments secured with clasps, - Paint-Stop filter, - High efficiency HEPA filter of H13 class, - gas absorber in the form of a case with granular activated carbon, - radial fan with enclosure, - pressure control that signalizes excessive resistance on the high efficiency filter, - control unit. #### **Operatinal Use** The device is an independent, mobile workstation. After switching it on, the operator places the source of emission on the desktop inside the cabinet hood and performs the required tasks inside the negative pressure zone, which eliminates the possibility of polluting the room with gases. Dust contaminants are then filtered by the high efficiency HEPA filter, while the case with activated carbon absorbs most of the harmful chemical compounds, such as styrene monomer, toluene, alcohols, phenol and other. When the threshold value of HEPA filter clogging is reached, a light signal will be activated to inform the operator about the need to replace the filter. Air gets inside the cabinet hood through the perforated upper wall of the extraction chamber and through the openings for hands located in the front wall. It is removed through the perforated outlet located beneath the device. Operation of the device requires: - periodic replacement of the HEPA filter the need to replace the filter is signalized by a red lamp, - periodic replacement of the case with activated carbon the need to replace the case is determined on the basis of a visual inspection of the case, - periodic replacement of the Paint-Stop filter. #### NOTE Absorption efficiency of activated carbon differs depending on the type of vapor or gas. Referential values are given on the following page. # Technical data | Туре | Part no. | Maximal
volume flow
[m³/h] | Maximal
vaccum
[Pa] | Motor
rate
[W] | Supply voltage
[V/Hz] | Acoustic pressure
level [dB(A)]* | Weight
[kg] | |---------------------|----------|----------------------------------|---------------------------|----------------------|--------------------------|-------------------------------------|----------------| | MiniDygestorium-350 | 801020 | 350 | 220 | 124 | 230/50 | 53 | 80 | $^{^{}st}$ Measurements were performed 1 m away from the device. # Spare parts | High efficiency HEPA filter | | | | | | | | | |-----------------------------|-----------|----------|----------------|------------------------------|-------|--|--|--| | A | Туре | Part no. | Weight
[kg] | Dimensions
AxB
xH [mm] | Class | Filter
material | | | | A | FW-MD-350 | 838F98 | 3,2 | 535x535
x78 | H13 | Hydrophobic
glass fiber filter
paper 99.95%. | | | | Pre-filter | | | | | | | | | |------------|-----------|----------|----------------|------------------------------|-------|--|--|--| | B B | Туре | Part no. | Weight
[kg] | Dimensions
AxB
xH [mm] | Class | Filter
material | | | | | PS-MD-350 | 852F03 | 0,5 | 535x535
x50 | G3 | Non woven
glass
fabric of
progressive
density. | | | # Type Part no. Weight Remarks AxB xH [mm] WA-ECO-20 838K98 24* 534x534 x155 Case is made of cardboard and plywood. *Weight of activated carbon 20 kg. # MiniDygestorium-350 #### **Dimensions** ## Values of activated carbon absorption efficiency for various types of vapors and gases High efficiency ethyl acrylate – $C_5H_8O_2$ methyl acrylate – $C_4H_6O_2$ acrylo, itrile – C_3H_3N valericaldehyde – $C_5H_{12}O$ butyl alcohol – $C_5H_{12}O$ butyl alcohol – $C_3H_{12}O$ butyl alcohol – $C_3H_{12}O$ butyl alcohol – $C_3H_{12}O$ propyl alcohol – C_3H_7OH a, ili, e – $C_3H_3NH_2$ aphta (petroleum) a, aphta (coal tar) bromi, e – Br_2 butyl cellosolve – $C_6H_{14}O_2$ – cellosolve – $C_6H_{14}O_2$ – cellosolve e acetate – $C_6H_{12}O_3$ butyl chloride – C_4H_7CI - cellosolve acetate - C₆H₁₂Cl butyl chloride - C₄H₂Cl propyl chloride - C₄H₇Cl mo_nochlorobe_nze_ne - C₆H₃Cl chlorobe_nze_ne - C₆H₃Cl chloroform - CHCl₃ chloroform - CHCl₃ chloropicri_n - CCl₃NO₂ chloropicri_n - CCl₃NO₂ chlorobutadie_ne - C₄H₃Cl cyclohexa_no₁e - C₆H₁₂O cyclohexa_no₂e - C₆H₁₀O tetrachloroetha₁e - C₂H₂Cl₄ tetrachloroetha₂e - C₂Cl₄ carbo_n tetrachloride - CCl₄ deca_ne - C₁₀H₂₂ tetrachloroethyle,e - C, Cl, carbo, tetrachloride - CCl, deca,e - C_10H_{22} dioxa,e - C,10H_{22} dioxa,e - C,10H_{22} dioxa,e - C,10H_{22} dioxan,e - C,1H_{2}O_{2} dioromometha,e - CH_{2}Br_{2} ethyle,e, dichloride - C_{2}H_{4}Cl_{2} dichloroetha,e - C,1H_{4}Cl_{2} dichloroetha,e - C,1H_{2}Cl_{2} dichloroethyle,e, - C,1H_{2}Cl_{2} dichloropropa,e - C,1H_{2}Cl_{2} dichloropropa,e - C,1H_{2}Cl_{2} dichloropropa,e - C,1H_{2}Cl_{2} dimethyla,illi,e - C,1H_{11}N amyl ether - C_{10}H_{12}O butyl ether - C,1H_{12}O butyl ether - C,1H_{13}O dichloroethyl ether - C,1H_{14}O erpoyl ether - C,1H_{14}O erpoyl ether - C,1H_{14}O ethyl be,ze,e - C,1H_{14}O hepa,ol hepa,o dipropyl keto,e - C, H_{14} O methyl butyl keto,e - C_6H_{12} O methyl isobutyl keto,e - C_6H_{12} O methyl ethyl keto,e - C_6H_{12} O methyl ethyl keto,e - C_4H_8 O creosole - C_8H_{19} O₂ creosol - C_7H_8 O croto,aldehyde - C_4H_6 O ethyl silicate - C_8H_{20} O $_4$ Si acrylic acid - C_8H_{16} O₂ butyric acid - C_8H_8 O₃ lactic acid - C_4H_6 O₃ uric acid - C_4H_8 O₃ uric acid - C_4H_8 O₃ uric acid - C_4H_8 O₄O₅ valeric acid - C_4H_8 O₇O valeric acid - C_3H_9 O ethyl mercapta, - C_2H_9 O ethyl mercapta, - C_2H_9 O ethyl mercapta, - C_2H_9 S propio,ic acid – C₅H₂O₂ valeric acid – C₅H₂O₂ valeric acid – C₅H₂O₂ ethyl mercapta, – C₂H₃S propyl mercapta, – C₂H₃S propyl mercapta, – C₂H₃S — methyl cellosolve – C₃H₈O₂ — methyl cellosolve acetate – C₅H₁₀O₃ methylcyclohexa,e – C₇H₁₄ methylcyclohexa,e – C₇H₁₄ methylcyclohexa,ol – C₇H₁₄O urea – CH₄N₂O kerose,e "icoty,e – C₁₀H₄N₂ "itrobe,ze,e – C₆H₃NO₂ "itrogliceri,e – C₂H₃NO₂ "itrogliceri,e – C₃H₃NO₂ "itrogliceri,e – C₃H₃NO₂ "itrogliceri,e – C₃H₇NO₂ "itrogliceri,e – C₄H₇NO₂ "itrogliceri,e – C₇H₇NO₂ "itrogliceri,e – C₇H₇NO₂ "itrogliceri,e – C₇H₇NO₂ propyl acetate – C₇H₂O₂ ethyl acetate – C₇H₂O₂ ethyl acetate – C₄H₁₆O₂ cotale,e – C₁₂H₈Cl₆ octa,e – C₆H₁₈ putresci,e – C₄H₁₂N₂ ozo,e – O₃ paradichlorobe,ze,e – C₄H₄Cl₂ — pe,ta,o,e – C₅H₅N dimethylsulphate – C₂Cl₄ pyyridi,e – C₅H₅N styre,e mo,omer – C₆H₈ turpe,ti,e – C₁₀H₁₆ mesityl oxide – C₆H₁₀ toluidi,e – C₇H₉N trichloroethyle,e – C₂HCl₃ trichloroethylene - C2HCl3 Average efficiency aceto,e - C₃H₂O acetyle,e - C₂H₂ acrolei, - C₃H₄O butyraldehyde - C₄H₈O ethyl alcohol - C₂H₃OH methyl alcohol - C₄H₅OH methyl bromide - C₂H₃Br methyl bromide - C₂H₃Br butadie,e - C₄H₆ chlori,e - Cl₂ ethyl chloride - C₂H₃Cl vi,yl chloride - C₂H₃Cl vi,yl chloride - C₄H₃Cl dichlorodifiluorometha_n - CCl₂F₂ diethyl ami_ne - C₄H₃N fluorotrichlorometha_n - CCl₂F phosge,e - CoCl₂ a_naesthetics hexal_ne - C₄H₁N fluorotrichlorometha_n - CCl₃F phosge,e - C₆H₁₂ hexyle,e - C₆H₁₃ hydroge, iodide - HI xyle,e - C₆H₁₀ formic acid - HCOOH methyl mercapta, - CH₃SH ethyl formate - C₃H₆O₂ methyl formate - C₃H₆O₂ methyl acetate - C₃H₆O₂ methyl acetate - C₃H₆O₂ pe,ta,e - C₅H₁₈ pe,ty,e - C₅H₈ pe,ty,e - C₅H₈ pe,ty,e - C₅H₈ pe,ty,e - C₅H₆O ethyle,e oxide - C₂H₆O ethyle,e oxide - C₅H₆O ethyle,e oxide - C₅H₆O Low efficiency acetaldehyde - C₂H₄O ammo,ia - NH₃ hydroge, bromide - HBr buta,e - C₄H₁₀ buta,o,e - C₄H₈O butyle,e - C₄H₈ buty,e - C₄H₆ methyl chloride - CH₃Cl methyl chloride – CH₃CI hydroge, chloride – HCI hydroge, cya,ide – HCN "itroge, dioxide – NO₂ sulphur dioxide – SO₂ hydroge, fluoride – HF formaldehyde – CH₂O propa,e – C₃H₆ propyle,e – C₃H₄ hydroge, sele,ide – H₂Se hydroge, sele,ide – H₂Se hydroge, sele,ide – H₂Se ulphur trioxide – SO₃