MiniDygestorium-350/Ex – individual stand for work with dusts and gases ### **Purpose** MiniDygestorium-350/Ex has been developed for purifying the air of the gaseous contaminations, emitted in small amounts, in chemical laboratories, biological-, analytical-, scientific facilities, research labs, health service units, in chemical ateliers in schools and in numerous other places, where noxious gases and vapours arise, which endanger our health. MiniDygestorium-350/Ex eliminates the expansion possibility of the pollutants within the room. The appliance can be used in areas of explosion hazard, where explosive atmosphere is likely to occur. ### <u>St</u>ructure The device consists of following elements: - cabinet fume hood a glass extraction chamber made of acidproof steel, with two holes for operator's hands, due to which various operations can be carried out on the desktop, - housing of steel sheets 3 segments assembled together with clasp locks, - pre-filter, - high-efficiency HEPA filter class H13, - gas absorber a cassette with granular activated carbon, - Ex fan placed in the lower part of the device, at the side of clean air. - pressure control indicating the excessive resistances of the high-efficiency filter, - control unit (to be installed within the room, beyond the Ex hazard area). ### **Operational Use** The construction is an independent mobile workplace. After switching it on, the operator places the emission source on the desktop (inside the cabinet), whereby the tasks are executed in the vacuum area, that eliminates the pollution being emerged outside. The dust pollutants are captured by the pre-filter and the highefficiency HEPA filter. Whereas, the active carbon layer absorbs the majority of noxious chemical compounds, such as: styrene, toluene, alcohols, phenol and many others. At the point when the HEPA filter reaches the limit pollution degree, a light signal indicates the need of filter replacement. Air is supplied into the extraction cabinet through the perorated upper wall and the holes for hands (in the front). The polluted air is expelled through the perforated outlet, located underneath the device. Maintenance consists in: - periodical replacement of the HEPA filter as signalised by the lamp, - periodical replacement of the cassette with active carbon depending on organoleptic evaluation of operator, - periodical replacement of the pre-filter. #### **CAUTION:** Absorption efficiency of the active carbon for various vapours and gases is listed on the next page. ### Technical Data | Туре | Part No. | Maximum volume flow [m³/h] | Maximum vacuum
[Pa] | Motor
rate
[W] | Supply voltage
[V/Hz] | Acoustic pressure
level [dB(A)]* | Weight
[kg] | | |------------------------|----------|----------------------------|------------------------|----------------------|--------------------------|-------------------------------------|----------------|--| | MiniDygestorium-350/Ex | 888D01 | 350 | 220 | 120 | 3x400 | 48 | 98 | | ^{*} Noise level has been measured at a distance of 1 metre (from the device). # Replaceable Parts | High-efficiency HEPA filter | | | | | | | Cassette with activated carbon | | | | | | |-----------------------------|--------------|----------|----------------|------------------------------|-------|--------------------------------------|--------------------------------|-----------|----------|----------------|------------------------------|--| | A | Туре | Part No. | Weight
[kg] | Dimensions
AxB
xH [mm] | Class | Filtration
material | | Туре | Part No. | Weight
[kg] | Dimensions
AxB
xH [mm] | Remarks | | A B | FW-MD-350/Ex | 838W03 | 15 | 535x535
x292 | H13 | Hydrophobic
glass paper
99,95% | A | WA-ECO-20 | 838K98 | 24* | 534x534
x155 | The cassette is
made of
cardboard and
plywood | *Weight of the activated carbon ~20 kg | Pre-filter Pre-filter | | | | | | | | | | | | |-----------------------|-----------|----------|----------------|------------------------------|-------|--|--|--|--|--|--| | B | Туре | Part No. | Weight
[kg] | Dimensions
AxB
xH [mm] | Class | Filtration
material | | | | | | | | PS-MD-350 | 852F03 | 0,5 | 535x535
x50 | G3 | Glass
unwoven with
progressively
growing
density | | | | | | # **Dimensions** ## Values of activated carbon absorption efficiency for various types of vapors and gases High efficiency ethyl acrylate - C₅H₅O₂ methyl acrylate - C₄H₀O₂ acrylo₂itrile - C₃H₃N valericaldehyde - C₅H₁₀O amyl alcohol - C₅H₁₂O butyl alcohol - C₃H₁N propyl alcohol - C₃H₁OH aˌniliˌe - C₄H₃NH₂ aphta (petroleum) aphta (coal tar) bromiˌne - Br₂ naphila (Coal Car) bromi_ne = Br₂ butyl cellosolve - C₆H₁₄O₂ - cellosolve - C₄H₁₆O₂ - cellosolve acetate - (butyl chloride - C₄H₇Cl propyl chloride - C₃H₇Cl $mo_n o chlorobe_n z e_n e - C_6 H_5 Cl$ $chlorobe_n z e_n e - C_6 H_5 Cl$ chlorobe, Ze, e - C₄H₃Cl ethyle, e chlorhydri_n - C₂H₃ClO chloroform - CHCl₃ chloro, litropropa, e - C₃H₄ClNO₂ chloropicri_n - CCl₃NO₂ chlorobutadie, e - C₄H₃Cl cyclohexa, ol - C₄H₁₂O cyclohexa, ol - C₆H₁₀O tetrachloroetha, e - C₂H₂Cl₄ tetrachloroethyle, e - C₂Cl₄ carbo, tetrachloride, - CCl carbo_n tetrachloride – CCI₄ $deca_ne - C_{10}H_{22}$ $dioxa_ne - C_4H_8O_2$ deca,e - $C_{10}H_{22}$ dioxa,e - $C_4H_8O_2$ dibromometha,e - CH_2Br_2 ethyle,e dichloride - $C_2H_4Cl_2$ dichlorobe,ze,e - $C_6H_4Cl_2$ dichloroethyle,e - $C_8H_4Cl_2$ dichloroethyle,e - $C_8H_2Cl_2$ dichloro,ritroetha,e - $C_8H_2Cl_2$ dichloropropa,e - $C_8H_6Cl_2$ dichloropropa,e - $C_8H_8Cl_2$ dichloropropa,e - $C_8H_8Cl_2$ dichloropropa,e - $C_8H_8Cl_2$ dichloroethyl ether - $C_8H_8Cl_2$ butyl ether - $C_8H_{18}O$ dichloroethyl ether - $C_8H_8Cl_2O$ isopropyl ether - $C_6H_{14}O$ propyl ether - $C_6H_{14}O$ phenol - C_8H_8O hepta,e - C_9H_{14} indole - C_8H_9O hepta,e - C_9H_{14} indole - C_8H_9O iodoform - CHI₃ camphor - C₁₀H₁₆O diethyl keto_ne - C₅H₁₀O dipropyl keto $_{n}e - C_{7}H_{14}O$ methyl butyl keto $_{n}e - C_{6}H_{12}O$ methyl isobutyl keto $_{n}e - C_{6}H_{12}O$ methyl ethyl keto $_{n}e - C_{6}H_{12}O$ cresole cathyl silicate $_{n}e - C_{6}H_{12}O$ caprylic acid $_{n}e - C_{6}H_{12}O$ caprylic acid $_{n}e - C_{6}H_{12}O$ lactic acid $_{n}e - C_{6}H_{12}O$ uric acid $_{n}e - C_{6}H_{12}O$ uric acid $_{n}e - C_{6}H_{12}O$ valeric acid $_{n}e - C_{6}H_{12}O$ valeric acid $_{n}e - C_{6}H_{12}O$ ethyl mercapta $_{n}e - C_{2}H_{12}O$ ethyl mercapta $_{n}e - C_{2}H_{12}O$ dipropyl keto_ne - C₇H₁₄O ethyl mercapta_n – C_2H_6S propyl mercapta_n – C_3H_8S Propyr Heraplua, $- C_3H_8O_2$ — methyl cellosolve $- C_3H_8O_2$ — methyl cellosolve acetate $- C_5H_{10}O_3$ methylcyclohexa, $e - C_7H_{14}$ methylcyclohexa, $ol - C_7H_{14}O$ urea $- CH_4N_2O$ metnylcyclonexanol - C₇H₁₄O urea - CH₄N₂O kerose_ne nlcotyne - C₁₀H₁₄N₂ nitrobe_nze_ne - C₆H₅NO₂ nitrogliceri_ne - C₂H₅NO₂ nitrogliceri_ne - C₃H₅NO₂ nitrogliceri_ne - C₃H₅NO₂ nitrogliceri_ne - C₃H₇NO₂ nitrotolue_ne - C₇H₇NO₂ no_nae - C₉H₂₀ amyl acetate - C₇H₁₄O₂ butyl acetate - C₇H₁₄O₂ butyl acetate - C₄H₁₂O₂ ethyl acetate - C₄H₁₂O₂ ethyl acetate - C₅H₁₀O₂ propyl acetate - C₅H₁₀O₂ propyl acetate - C₅H₁₀O₂ octale_ne - C₁₂H₈Cl₆ octale_ne - C₁₂H₈Cl₆ octale_ne - C₁H₁₂N₂ ozone - O₃ paradichlorobe_nze_ne - C₆H₁₀O₂ pradichlorobe_nze_ne - C₆H₁₀O₂ paradichlorobe, ze, e - C₆H₄Cl - pe, tan, o₁e - C₅H₁₀O perchloroethyle, e - C₂Cl₄ pyridi, e - C₅H₅N dimethylsulphate - C₂H₆O₄S skatole - C₅H₅N styre, e mo₁omer - C₆H₈ turpe, ti, e - C₁₀H₁₆ mesityl oxide - C₆H₁₀O tolue_ne – C₇H₈ toluidi_ne – C₇H₉N trichloroethylene - C2HCl3 Average efficiency aceto_ne - C₃H₆O acetyle_ne - C₂H₂ acrolei_n - C₃H₄O butyraldehyde - C₄H₉O ethyl alcohol - C₂H₃OH methyl alcohol - CH₃OH methyl alcohol – CH₃OH be_nze_ne – C₆H₆ ethyl bromide – C₂H₃Br methyl bromide – CH₃Br butadie_ne – C₄H₆ chlori_ne – Cl₂ ethyl chloride – C₂H₃Cl cyclohexe_ne – C₆H₁₀ dichlorodifluorometha_n – CCl₂F₂ diethyl ami_ne – C₄H₁₁N carbo_n disulphyde – CS₂ ether – C₄H₁₀O ethyl ami_ne – C₄H₁₀O ethyl ami_ne – C₄H₇O ethyl ami_ne – C₂H₇N fluorotrichlorometha_n – CCl₃F phosge_ne – COCl₂ phosge_ne – COCl₂ phose-ne Coc a_n aesthetics $hexa_ne - C_6H_{14}$ $hexyle_ne - C_6H_{10}$ $hexy_ne - C_6H_{10}$ $isopre_ne - C_5H_8$ hydroge_n iodide – HI xyle_ne – C_8H_{10} formic acid – HCOOH methyl mercapta_n – CH₃SH ethyl formate – C₃H₆O₂ methyl formate – C₂H₄O₂ _nitrometha_ne – CH₃NO₂ methyl acetate $- C_3H_6O_2$ pentane $- C_5H_{12}$ pentylene $- C_5H_8$ pentylene $- C_5H_8$ propionandehyde – C₃H₆O ethylene oxide – C₂H₄O carbon monoxide – CO Low efficiency acetaldehyde - C₂H₄O ammonia - NH₃ amino_nia - NH₃ hydroge_n bromide - HBr buta_ne - C₄H₅O buty_ne - C₄H₈O buty_ne - C₄H₈ buty_ne - C₄H₆ methyl chloride - CH₅Cl methyl chloride – CH₃CI hydroge_n chloride – HCI hydroge_n cya_nide – HCN _nitroge_n dioxide – NO₂ sulphur dioxide – SO₂ hydroge_n fluoride – HF formaldehyde – CH₂O propa_ne – C₃H₈ propyle_ne – C₃H₆ propy_ne – C₃H₄ hydroge_n sele_nide – H₂Se hydroge_n sulphide – H₅S hydroge, sulphide – H₂S sulphur trioxide – SO₃