

MiniDygestorium-350/Ex – individual stand for work with dusts and gases

Ex

ll 2 G c Ex e ll T3

Application

MiniDygestorium-350/Ex has been developed for purifying the air of the gaseous contaminations, emitted in small amounts, in chemical laboratories, biological-, analytical-, scientific facilities, research labs, health service units, in chemical ateliers in schools and in numerous other places, where noxious gases and vapours arise, which endanger our health.

MiniDygestorium-350/Ex eliminates the expansion possibility of the pollutants within the room. The appliance can be used in areas of explosion hazard, where explosive atmosphere is likely to occur.

Structure

The device consists of following elements:

- cabinet fume hood a glass extraction chamber made of acid-proof steel, with two holes for operator's hands, due to which various operations can be carried out on the desktop,
- housing of steel sheets 3 segments assembled together with clasp locks,
- pre-filter,
- high-efficiency HEPA filter class H13,

- gas absorber a cassette with granular activated carbon,
- Ex fan placed in the lower part of the device, at the side of clean air,
- pressure control indicating the excessive resistances of the high-efficiency filter,
- control unit (to be installed within the room, beyond the Ex hazard area).

Operational Use

The construction is an independent mobile workplace. After switching it on, the operator places the emission source on the desktop (inside the cabinet), whereby the tasks are executed in the vacuum area, that eliminates the pollution being emerged outside.

The dust pollutants are captured by the pre-filter and the highefficiency HEPA filter. Whereas, the active carbon layer absorbs the majority of noxious chemical compounds, such as: styrene, toluene, alcohols, phenol and many others. At the point when the HEPA filter reaches the limit pollution degree, a light signal indicates the need of filter replacement.

Air is supplied into the extraction cabinet through the perorated upper wall and the holes for hands (in the front). The polluted air is expelled through the perforated outlet, located underneath the device.

Maintenance consists in:

- periodical replacement of the HEPA filter as signalised by the lamp,
- periodical replacement of the cassette with active carbon depending on organoleptic evaluation of operator,
- periodical replacement of the pre-filter.

CAUTION:

Absorption efficiency of the active carbon for various vapours and gases is listed on the next page.

Туре	Part No.	Maximum volume flow [m³/h]	Maximum vacuum [Pa]	Motor rate [W]	Supply voltage [V/Hz]	Acoustic pressure level [dB(A)]*	Weight [kg]	
MiniDygestorium-350/Ex	888D01	350	220	120	3x400	48	98	

* Noise level has been measured at a distance of 1 metre (from the device).

Replaceable Parts

Туре

FW-MD-350/ Ex

High-efficiency HEPA filter

Technical Data

Part No.	Weight [kg]	Dimensions AxB xH [mm]	Class	Filtration material	A B B B B B B B B B B B B B B B B B B B	Туре	Part No.	Weight [kg]	Dimensions AxB xH [mm]	Remarks
838W03	15	535x535 x292	H13	Hydrophobic glass paper 99,95%		WA-ECO-20	838K98	24*	534x534 x155	The cassette is made of cardboard and plywood

Cassette with activated carbon

*Weight of the activated carbon ~20 kg

Туре	Part No.	Weight [kg]	Dimensions AxB xH [mm]	Class	Filtration material
PS-MD-350	852F03	0,5	535x535 x50	G3	Glass unwo- ven with progressively growing density

MiniDygestorium-350/Ex

Dimensions

Values of activated carbon absorption efficiency for various types of vapors and gases

High efficiency ethyl acrylate – C₅H₈O₂ methyl acrylate $-C_4H_6O_2$ acrylonitrile $-C_3H_3N$ valericaldehyde $-C_5H_{10}O$ amyl alcohol - C₅H₁₂O butyl alcohol – C₄H₁₀O propyl alcohol – C₃H₇OH aniline – C_eH_eNH₂ naphta (petroleum) naphta (coal tar) bromine – Br₂ butyl cellosolve – C₆H₁₄O₂ - cellosolve - C₄H₁₀O₂ $- \text{ cellosolve } - C_6H_{12}O_3$ butyl chloride - C_4H_9Cl propyl chloride - C_3H_7Cl monochlorobenzene – C_6H_5CI chlorobenzene – C_6H_5CI ethylene chlorhydrin – C₂H₅ClO chloroform – CHCl₃ chloronitropropane – $C_3H_6CINO_2$ chloropicrin – CCl_3NO_2 chlorobutadiene – C_4H_5Cl cyclohexanol – $C_6H_{12}O$ cyclohexanone – C₆H₁₀O tetrachloroethane – C₂H₂Cl₄ tetrachloroethylene – C₂Cl₄ carbon tetrachloride – CCl_4 decane – $C_{10}H_{22}$ dioxane – $C_4H_8O_2$ dibiance $C_{4}F_{4}S_{2}$ dibromomethane $- CH_{2}Br_{2}$ ethylene dichloride $- C_{2}H_{4}Cl_{2}$ dichlorobenzene $- C_{6}H_{4}Cl_{2}$ dichloroethane – $C_2H_4Cl_2$ dichloroethylene – $C_2H_2Cl_2$ dichloronitroethane - CH₃CCl₂NO₂ dichloropropane – $C_3H_6Cl_2$ dimethylaniline – $C_8H_{11}N$ amyl ether – $C_{10}H_{22}O$ butyl ether – $C_8H_{18}O$ dichloroethyl ether – $C_4H_8Cl_2O$ isopropyl ether – $C_6H_{14}O$ propyl ether – $C_6H_{14}O$ ethyl benzene - C₈H₁₀ phenol – C₆H₆O heptane – C₇H₁₆ heptylene – C₇H₁₄ indole – C_8H_7N isophorone – $C_9H_{14}O$ iodine – I iodoform – CHIcamphor - C10H16O diethyl ketone – C₅H10O

dipropyl ketone – C₇H₁₄O methyl butyl ketone – C₆H₁₂O methyl isobutyl ketone - C₆H₁₂O methyl ethyl ketone – C_4H_8O creosole – $C_8H_{10}O_2$ cresol - C7H8O crotonaldehyde – C_4H_6O ethyl silicate – $C_8H_{20}O_4Si$ acrylic acid – $C_3H_4O_2$ caprylic acid – $C_8H_{16}O_2$ butyric acid – $C_4H_8O_2$ lactic acid $- C_3H_6O_3$ uric acid $- C_5H_4N_4O_3$ acetic acid $- CH_3COOH$ propionic acid – $C_3H_6O_2$ valeric acid – $C_5H_{10}O_2$ menthol – $C_{10}H_{20}O$ ethyl mercaptan – C_2H_6S propyl mercaptan – C_3H_8S methyl cellosolye – C₂H₂O₂ - methyl cellosolve acetate - $C_5H_{10}O_3$ methylcyclohexane - C_7H_{14} methylcyclohexanol – $C_7H_{14}O$ urea – CH_4N_2O kerosene nicotyne – C10H14N2 nitrobenzene – $C_6H_5NO_2$ nitroethane – $C_2H_5NO_2$ nitroglicerine – $C_3H_5N_3O_9$ nitropropane – $C_3H_7NO_2$ nitrotoluene – $C_7H_7NO_2$ nonane – C₉H₂₀ amyl acetate – C₇H₁₄O₂ butyl acetate $-C_6H_{12}O_2$ ethyl acetate $-C_6H_{12}O_2$ isopropyl acetate $-C_8H_{10}O_2$ propyl acetate $-C_5H_{10}O_2$ octalene – C₁₂H₈Cl₆ octane – C₈H₁₈ putrescine – C₄H₁₂N₂ $c_4H_2H_2$ ozone – O₃ paradichlorobenzene – C₆H₄Cl₂ – pentanone – C₅H10O perchloroethylene – C_2Cl_4 pyridine – C_5H_5N dimethylsulphate – $C_2H_6O_4S$ skatole – C_9H_9N styrene monomer – C₈H₈ turpentine – $C_{10}H_{16}$ mesityl oxide – $C_6H_{10}O$ toluene – C₇H₈ toluidine – C-H_aN trichloroethylene – C₂HCl₃

Average efficiency acetone $-C_3H_6O$ acetylene – C₂H₂ acrolein – C_3H_4O butyraldehyde – C_4H_8O ethyl alcohol – C_2H_5OH methyl alcohol – CH₃OH benzene – C₆H₆ ethyl bromide – C₂H₅Br methyl bromide – CH₃Br butadiene – C₄H₆ chlorine – Cl₂ ethyl chloride – C₂H₅Cl vinyl chloride – C₂H₃Cl cyclohexene – C₆H₁₀ dichlorodifluoromethan - CCl₂F₂ diethyl amine – C₄H₁₁N carbon disulphyde – CS_2 ether – $C_4H_{10}O$ ethyl ether - C4H10O ethyl amine – C_2H_7N fluorotrichloromethan – CCl_3F phosgene – COCl₂ anaesthetics hexane – C₆H₁₄ hexylene - C₆H₁₂ hexyne – C_6H_{10} isoprene – C₅H₈ hydrogen iodide – HI xylene – C₈H₁₀ formic acid – HCOOH methyl mercaptan – CH_3SH ethyl formate – $C_3H_6O_2$ methyl formate – C₂H₄O₂ nitromethane – CH_3NO_2 methyl acetate – $C_3H_6O_2$ pentane - C₅H₁₂ pentylene – C_SH_8 pentyne – C_SH_8 propionandehyde – C_3H_6O ethylene oxide – C_2H_4O carbon monoxide – CO

Low efficiency acetaldehyde – C₂H₄O ammonia – NH₃ hydrogen bromide – HBr butane – C₄H₁₀ butance $-C_4H_8O$ butanone $-C_4H_8O$ butylene $-C_4H_8$ butyne $-C_4H_6$ methyl chloride – CH₃Cl hydrogen chloride – HCl hydrogen cyanide – HCN nitrogen dioxide – NO₂ sulphur dioxide – SO₂ hydrogen fluoride – HF formaldehyde – CH₂O propane – C₃H₈ propylene – C₃H₆ propyne – C₃H₄ hydrogen selenide – H₂Se hydrogen sulphide – H₂S sulphur trioxide – SO₃